
On Learning In Agent-Centered Search

Nathan R. Sturtevant
Dept. of Computing Science

University of Alberta
Edmonton, Alberta, Canada
nathanst@cs.ualberta.ca

Vadim Bulitko
Dept. of Computing Science

University of Alberta
Edmonton, Alberta, Canada
bulitko@ualberta.ca

Yngvi Björnsson
School of Computer Science

Reykjavik University
Reykjavik, Iceland
yngvi@ru.is

ABSTRACT
Since the introduction of the LRTA* algorithm, real-time heuris-
tic search algorithms have generally followed the same plan-act-
learn cycle: an agent plans one or several actions based on locally
available information, executes them and then updates (i.e., learns)
its heuristic function. Algorithm evaluation has almost exclusively
been empirical with the results often being domain-specific and
incomparable across papers. Even when unification and cross-
algorithm comparisons have been carried out in a single paper,
there was no understanding of how efficient the learning process
was with respect to a theoretical optimum. This paper addresses the
problem with two primary contributions. First, we formally define
a lower bound on the amount of learning any heuristic-learning al-
gorithm needs to do. This bound is based on the notion of heuristic
depressions and allows us to have a domain-independent measure
of learning efficiency across different algorithms. Second, using
this measure we propose to learn “costs-so-far” (g-costs) instead
of “costs-to-go” (h-costs). This allows us to quickly identify re-
dundant paths and dead-end states, thereby leading to asymptotic
performance improvement as well as 1-2 orders of magnitude con-
vergence speed-ups in practice.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms

Keywords
Search, Planning, Real-Time, Learning

1. INTRODUCTION
In this paper we study the problem of agent-centered real-time

heuristic search [11]. The distinctive property of such search is that
an agent must repeatedly plan and execute actions within a constant
time interval that is independent of the size of the problem being
solved. Furthermore, the planning must be restricted to the part of
the domain around the current state of the agent. This restriction
severely limits the range of applicable heuristic search algorithms.

Cite as: On Learning In Agent-Centered Search, Nathan R. Sturtevant,
Vadim Bulitko and Yngvi Björnsson, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

For instance, static search algorithms such as A* [6] and IDA* [16],
re-planning algorithms such as D* [27], and anytime re-planning
algorithms such as AD* [19] cannot guarantee a constant bound on
planning time per action. TBA* [2], a real-time variant of A*, is
also inapplicable as it does not restrict its planning to the vicinity
of the agent.

As a motivating example, consider pathfinding in video games.
A standard approach is to view a game map as a rectangular grid
with some cells blocked due to obstacles. In such games, an agent
can be tasked to go to any location on the map from its current loca-
tion. Examples include real-time strategy games such as Warcraft
3, first-person shooters such as Doom, and role-playing games such
as Baldur’s Gate. Size and complexity of game maps as well as the
number of simultaneously moving units on such maps continues to
increase with every new generation of games. Nevertheless, each
game unit or agent must react quickly to the user’s command re-
gardless of the map’s size and complexity. Consequently, game
companies impose a time-per-action limit on their pathfinding al-
gorithms, often on the order of 1-3 ms per frame.

Real-time search algorithms compute (or plan) only the first few
actions for the agent to take. This is usually done by conducting a
lookahead search of a fixed depth (also known as “search horizon",
“search depth" or “lookahead depth") around the agent’s current
state and using a heuristic (i.e., an estimate of the remaining travel
cost) to select the next few actions. The actions are then taken
and the planning-execution cycle repeats. Since the goal state is
not reached by most such local searches, the agent runs the risk of
heading into a dead end or, more generally, selecting suboptimal
actions. To address this problem, real-time heuristic search algo-
rithms update (or learn) their heuristic function with experience,
however the learning process is not always efficient, and can pro-
duce behavior that seems irrational.

Since the introduction of the seminal real-time heuristic search
algorithm (LRTA*) around two decades ago [17], most research
in the area has focused on making the learning process more ef-
ficient. Most of the results share the same drawback – they are
mostly empirical and domain-specific in nature. The lack of a
domain-independent measure of learning efficiency has impeded
a clear understanding of learning difficulty inherent in a problem
as well as gauging learning efficiency delivered by the algorithms.

In this paper we make two primary contributions. First, we intro-
duce a simple domain-independent measure of learning difficulty,
which can be computed for any given state space and heuristic
function. Furthermore, the concept behind the learning-difficulty
measure provides an insight into learning problems that heuristic-
learning agent-centered algorithms face. For a class of real-time
search agents, we can show that increasing lookahead does not
asymptotically improve performance. With this insight, we make

333

333-340

the second contribution by proposing a new learning mechanism
that updates costs-so-far (g-costs) instead of costs-to-go (h-costs).
This allows us to efficiently identify and prune out states extrane-
ous to the problem at hand. We demonstrate that the new learning
mechanism is asymptotically faster on an important class of learn-
ing problems. Finally, to demonstrate the efficiency of the new
learning mechanism empirically we implement a real-time version
of iterative deepening best-first search and show 1-2 orders of mag-
nitude improvements across several domains.

The rest of the paper is organized as follows. We formalize the
problem in Section 2, followed by a review of the related work
in Section 3. The first contribution of this paper is presented in
Section 4 followed by the new learning paradigm in Section 5. A
practical implementation of the new learning paradigm comes in
the form of a new algorithm in Section 6, complete with an exten-
sive empirical evaluation in Section 7. Future work directions and
conclusions close the paper in Section 8.

2. PROBLEM FORMULATION
We define a heuristic search problem as an undirected graph con-

taining a finite set of states S and weighted edges E, with a state
sstart designated as the start state and a state sgoal designated as the
goal state. At every time step, a search agent has a single current
state, vertex in the search graph, and takes an action by travers-
ing an out-edge of the current state. Each edge has a positive cost
c(s, s′) associated with it. The total cost of edges traversed by an
agent from its start state until it arrives at the goal state is called the
solution cost.

We require algorithms to be complete and produce a path from
start to goal in a finite amount of time if such a path exists. In
order to guarantee completeness for real-time heuristic search we
make the assumption of safe explorability of our search problems.
Namely, all costs are finite and the goal state is reachable from any
state that the agent can possibly reach from its start state.

The analysis in the paper applies to the ant paradigm [23].
Namely, our algorithms have an agent-centered view of the en-
vironment, having access to the search graph in a certain radius
around their current state. In other words, they cannot access ar-
bitrary vertices and edges of the search graph. Furthermore, any
additional information they learn (e.g., a heuristic function) is sub-
ject to the same local access. This view is motivated by various
applications ranging from routing in ad hoc wireless networks [18]
to map streaming in video games [28].

Additionally, as motivated in the introduction, we consider real-
time algorithms only. Specifically, a search algorithm is considered
real-time if and only if the amount of planning it performs prior
to traversing an edge in the search graph is upper-bounded by a
constant independent of the total number of vertices (but possibly
dependent on the vertex degree). As in most real-time heuristic
search work, we adopt the plan-execute cycle where the agent does
not plan while moving and does not move while planning.

Formally, all algorithms discussed in this paper are applicable
to any such heuristic search problem. To keep the presentation
focused and intuitive as well as to afford a large-scale empirical
evaluation, we will use two popular domains: grid-based pathfind-
ing and sliding-tile puzzles in the rest of the paper. Nevertheless,
the contributions we make are, in principle, applicable to general
planning and especially to real-time planning.

3. RELATED WORK
Most work in real-time heuristic search focused on heuristic-

learning algorithms. The seminal example of such learning is the

Learning Real-time A* (LRTA*) algorithm [17] shown in Figure 1.

LRTA*(sstart, sgoal, gmax)

1 s ← sstart

2 while s �= sgoal do
3 expand successor states up to cost gmax away
4 find a frontier state s′ with the lowest g(s′) + h(s′)
5 update h(s) to max(h(s), g(s′) + h(s′))
6 change s one step towards s′

7 end while

Figure 1: The LRTA* algorithm.
We will use the pseudo-code to illustrate the key points of this

type of search. As long as the goal state is not reached (line 2), the
agent follows the plan (lines 3-4), learn (line 5), execute (line 6) cy-
cle. The planning consists of a fixed depth lookahead during which
all unique states up to a certain cost cut-off (gmax) are expanded.
During the learning part of the cycle, the agent updates a numeric
value h(s) for its current state s. The heuristic function h is an esti-
mate of the minimum total edge cost from a given state s to the goal
state sgoal, denoted by h∗(s). A heuristic is admissible if for any
state s it does not exceed h∗(s). A heuristic is consistent if for any
two adjacent states s1 and s2 the difference in their heuristic val-
ues does not exceed the edge weight: |h(s1)− h(s2)| ≤ c(s1, s2).
Finally, the agent moves by changing its current state towards the
most promising state discovered in the planning stage.

Since LRTA*, research in the field of learning real-time heuris-
tic search has resulted in several dozen algorithms with numerous
variations. Most of them can be described by the following four
attributes. The local search space is the set of states whose heuris-
tic values are accessed in the planning stage. The two common
choices are full-width limited-depth lookahead [17, 24, 26, 25, 5,
7, 21] and A*-shaped lookahead [12, 13, 15]. The local learning
space is the set of states whose heuristic values are updated. Com-
mon choices are: the current state only [17, 24, 26, 25, 5, 3], all
states within the local search space [12, 13] and previously visited
states and their neighbors [7, 21]. A learning rule is used to update
the heuristic values of the states in the learning space. The common
choices are dynamic programming or mini-min [17, 26, 25, 7, 21],
their weighted versions [24], max of mins [3], modified Dijkstra’s
algorithm [12], and updates with respect to the shortest path from
the current state to the best-looking state on the frontier of the local
search space [13]. Additionally, several algorithms learn more than
one heuristic function [22, 5, 24]. The control strategy decides on
the actions taken following the planning and learning phases. Com-
monly used strategies include: the first move of an optimal path to
the most promising frontier state [17, 5, 7], the entire path [3], and
backtracking moves [26, 25, 3].

Unfortunately, the evaluation of the numerous algorithms has
been primarily empirical and, worse yet, with the results com-
puted over incompatible sets of problems. While some researchers
(e.g., [4]) compared a number of algorithms on the same problems,
it remained unclear how well they perform with respect to a theoret-
ical optimum. Indeed, the theoretical results on convergence have
been limited to worst-case bounds that do not take into account the
structure of a particular problem [9, 14, 10, 4].

As far as we know, the connection between convergence cost of
LRTA* and the total amount of error in heuristic search was first
made in [4]. The connection was purely empirical and no lower
bound on the amount of learning was derived. A more recent anal-
ysis using total heuristic error applies to random maps only, and
does not explain convergence difficulty via problem structure in a
quantitative way [20]. Also, it provides no way to make quantita-

334

tive predictions of the amount of learning for a given problem.
The first contribution of this paper is the introduction of a

domain-independent measure of learning difficulty that takes prob-
lem structure into account. This allows us to formulate a theoret-
ically minimal amount of learning that any heuristic search algo-
rithm from a certain broad class must perform. This bound serves
as a yardstick for convergence performance of the algorithms.

4. DIFFICULTY OF LEARNING
The first contribution of this paper is a domain-independent anal-

ysis of learning difficulty under the following assumptions. First,
we assume that the heuristic being learnt by the algorithm is consis-
tent at all times, which also implies admissibility when the h-cost
of the goal is 0. Second, we assume that all edge weights are con-
stant bounded. For simplicity we assume uniform edge costs of 1
in this analysis. Third, we assume that all algorithms use a Bellman
update rule [1] (called mini-min in [17]), updating their heuristic in
the current state as:

h(s) = min
s′∈Succ(s)

`
c(s, s′) + h(s′)

´
= min

s′∈Succ(s)

`
1 + h(s′)

´
where Succ(s) is the set of all states reachable from s in a single
move1 and c(a, b) is the optimal cost between a and b. Fourth, we
assume that the state snext the agent travels to from its current state
s is selected as (arg breaks ties randomly):

snext = arg min
s′∈Succ(s)

`
c(s, s′) + h(s′)

´
= arg min

s′∈Succ(s)
h(s′)

Under these four assumptions we say that the learning process
converges on a particular problem if, after repeatedly solving the
same problem n times, the (n + 1)-th solution cost incurred by
the agent is guaranteed to be optimal regardless of the tie breaking.
The total amount of learning is the cumulative magnitude of ad-
justments an algorithm made to its heuristic h during these n runs
(also called trials). The cumulative cost of all edges traversed by
the algorithm on the n + 1 trials is called the convergence cost.
These definitions, with the exception of tie-breaking, are in line
with previously published work (e.g., [4]).

Given these assumptions, we can describe the total amount of
learning that any agent must do to converge. First, an agent must
learn a perfect heuristic on all optimal paths between the start and
the goal. Second, for every node nb which borders a node no on an
optimal path, nb must have a high enough value to prevent a greedy
agent from leaving the optimal path. More precisely, c(no, nb) +
h(nb) > h(no). Finally, the heuristic in the rest of the state space
must be consistent with the values bordering the optimal path.

These three conditions are both necessary and sufficient. The
first condition ensures, as ties are broken randomly, that all optimal
paths could be followed. If the heuristic of a state on the optimal
path is too high, it will be inadmissible and inconsistent, and if it is
too low, an agent will necessarily revisit the state as other heuristic
values exceed it. The second and third conditions together ensure
that all nodes outside the optimal path will always have larger f -
costs than the optimal nodes, and thus a suboptimal path will never
be followed no matter the lookahead.

Given this definition there is a minimum amount of learning, L,
that a learning algorithm must perform to converge on any partic-
ular problem. We use a simple argument to show that increasing
the lookahead radius will not asymptotically reduce the time re-
quired to perform the minimum learning. Assume that a learning
algorithm can look ahead k states prior to each action. Due to the
consistency property, the heuristic can change at most by k in the

1With larger lookahead this rule is applied recursively.

D C B

C

B

A

D

E

E

G

F

F

S

Figure 2: 9 × 9 sample learning map.

12.5

11.5

10.5

9.5

11

10

9

11.5

10

9.5

8.5

10.5

9

8.5

8

9.5

13 12 11 10

13

12

11

10

14

5.0

4.0

3.0

6.0

2.0

1.0

G5.0 4.0 3.06.0 2.0 1.0

11 7.011.514.5 13.5 12.515.5

13.5

12.5

11.5

14.5

11

7.0

10 9.0 8.01114 13 12

15

13

12

11

14

10

9.0

8.0

1516

5.0

4.5

4.0

3.5

5.0

4.5

4.0

4.5

4.5

5.0

4.5

4.0

4.0

4.5

5.0

3.5

4.5 4.0 3.5 3.0

4.5

4.0

3.5

3.0

5.0

G

3.03.04.5 4.0 3.55.0

4.0

3.5

3.0

4.5

3.0

1.0 .51.53.0 2.5 2.0

3.5

2.5

2.0

1.5

3.0

1.0

.5

3.54.0

(a) Required heuristic (b) Required learning

Figure 3: Measuring minimum learning required.

space of the lookahead. This means that the heuristic value of the
current state can be increased by at most 2k. In order to maintain
consistency, subsequent states in the lookahead will also have their
heuristic values updated, but by progressively smaller values, with
the final state not having its heuristic updated. As a result, the total
changes made to the heuristic are bounded by k(k+1) per underly-
ing action of the agent. But, k must be constant relative to the size
of the map. Thus learning must take at least �L/(k2 + k)� steps,
which is still O(L).

4.1 Example and Approximation
We approximate the metric, L, to measure learning on any given

problem as follows. First, we place the start and goal on an opti-
mal path queue. We iteratively take nodes off of this queue, placing
them on a closed list and updating their h-cost to the perfect h-cost.
Perfect h-costs are computed using a reverse A* search. Neighbors
on the closed list are ignored and neighbors on optimal paths are
put onto the optimal path queue; all other nodes are placed on a
neighbor queue. When the optimal path queue is empty, all opti-
mal paths have been found. Nodes in the neighbor queue are up-
dated to their optimal h-cost, and then a pathmax step propagates
the updated heuristic through the rest of the search space until the
learned heuristic is consistent everywhere. The sum of the heuristic
updates over all nodes is our approximation of L.

We demonstrate this in Figure 2. This is an 8-connected grid
with diagonal edges having cost 1.5 and cardinal edges having cost
1. The initial heuristic is the cost of optimal travel between two
points, assuming no walls. The goal is to travel between S and G.
An agent greedily following the heuristic starting at S will travel
first to A and then have to learn its way out of the local minimum.
Our approximation computes the heuristic as follows.

First, the optimal costs between the goal and the start are com-
puted, shown in Figure 3(a). There are two optimal paths corre-
sponding with the outer edge of the map. The optimal heuristic
values are shown in the figure. The start state must have a heuristic
value of 16, but the initial heuristic value is only 8 · 1.5 = 12, or
off by 4 as shown in Figure 3(b). Once all heuristic values on the
optimal paths are known, the dark shaded cells are on the neighbor
queue with their optimal cost to the goal. The heuristic values from

335

these nodes are then propagated to the remaining nodes in the state
space by ensuring that the values are consistent everywhere. The
corner node next to the start state has a heuristic of 15.5. Because
the cost to move diagonally towards the goal in the lower-right cor-
ner is 1.5, the heuristic of the neighbor must be at least 14 to en-
sure consistency. Note, however, that the heuristic of this corner
state does not have to be 15.5. A value of 14.5 + ε is sufficient
to prevent an agent from leaving the optimal path and visiting this
node. Thus, our approximation slightly overestimates the required
learning, although the error per state is constant bounded.

5. ANALYSIS OF LEARNING
Learning h-values can be slow because inaccurate heuristics val-

ues are used to update other also inaccurate heuristic values. This
is particularly problematic if a learning agent enters a heuristic de-
pression [8], a localized area in the search space where it has to
repeatedly revisit states to raise their heuristic values enough to be
able to continue to explore other parts of the search space. The
more frequent and deeper the depressions are, the more severely
the problem manifests itself.

This is illustrated in Figure 4 with an example of LRTA* behav-
ior on a portion of the same map we have previously been studying.
States are marked with their initial heuristic values. Consider part
(a) where the agent is in the shaded cell. Using a lookahead of
one, the value of the corner heuristic can be updated from 3 to 5,
because a neighbor distance 1 has heuristic cost 4. In part (b) the
agent moves to the highlighted cell and makes a similar update,
raising the h-cost to 5.5, before moving to the cell updated in part
(c), where that cell will be updated to have a heuristic value of 5.5.

After three updates, considerable learning still remains. This
is because the heuristic is being updated locally from neighbor-
ing heuristics, which, due to consistency, cannot be considerably
larger. Thus, a state must be visited and updated many times before
large changes in the heuristic can occur. As this learning begins far
from the goal state, heuristic estimates are likely to be inaccurate.

Heuristic values are inaccurate near the start state, but g-costs
near the start state are quite accurate. So, an alternate approach
would be to learn g-costs, which can be ‘learned’ more accurately.
At a first glance it is not clear how this is going to help the agent in
finding the goal more efficiently, but a key observation is that the
g-values can be helpful in escaping heuristic depressions. Not only
can the they greatly reduce the number of times the agent must
revisit states in a heuristic depression, but they are also useful in
identifying dead states and redundant paths. Such identifications
require accurate values and cannot be done with h-based learning.

Excluding the start and goal, any node on an optimal path must
have neighbor with both higher and lower g-costs. If a state has
no neighbors with larger g-costs, then an optimal path to the goal
cannot pass through this state. We thus define a dead cell as fol-
lows: Given a start state s and a node n, n is a dead cell if n is
not the goal state and if for all non-dead neighbors of n, n1 . . . ni,
c(s, n) ≥ c(ni, s).

Consider the example in Figure 5, which shows g-cost estimates
for the same problem. Upon reaching the corner, the agent can
potentially mark each cell with the g-costs in the figure, which are
upper-bounds on the actual cost to each node. In part (a) of the
figure, the agent can see that the highlighted node in the corner is
dead, because all neighbors can be reached by shorter paths through
other nodes. After this node is marked dead, in part (b), two more
cells can be marked dead. Learning that a cell is dead only requires
visiting a state a single time, unlike learning a heuristic, which may
take multiple visits. But, there is more that can be done if we know
the optimal cost to each state.

7.5

7.0

6.5

6.0

6.0

5.5

5.0

7.0

5.5

4.5

4.0

6.5

5.0

4.0

3.0

6.0

G

7.5

7.0

6.5

6.0

6.0

5.5

5.0

7.0

5.5

4.5

4.0

6.5

5.0

4.0

5.0

6.0

G

7.5

7.0

6.5

6.0

6.0

5.5

5.0

7.0

5.5

4.5

5.5

6.5

5.0

4.0

5.0

6.0

G

(a) Step 1 (b) Step 2 (c) Step 3

Figure 4: Learning in a local minima.

4.5

5.5

7.5

6

7

9

5.5

7

7.5

8.5

7.5

9

8.5

9

G

4.5

5.5

7.5

6

7

9

5.5

7

7.5

8.5

7.5

9

8.5

9

G

(a) Step 1 (b) Step 2

Figure 5: Learning g-costs.

Consider Figure 6. In this case the cells in the corners can be
marked as dead and removed once the optimal cost to these cells
is discovered. Note, however, that even after removing the dead
cells there are still many paths that lead out through this room. But,
because there is only a single doorway to the room, these paths
are all redundant. Detecting and ignoring nodes on such redundant
paths offers additional saving. This requires two steps as illustrated
in Figure 7. In the left portion of the figure, we show two possible
optimal paths leading out of the room. We focus on nodes A and
B, shown in detail in the center of the figure.

The first step is to mark all parents which are along optimal paths
to a node. Each time a node is generated, if the parent is on an
optimal path to the node, the parent is added to the list of optimal
parents for that node. In the case of node B, nodes A and D can both
reach B with the same cost, and so B maintains this information.

The second step occurs in the next iteration of search. Suppose
that A is visited first. Then, at A we will notice that there is also
an optimal path to B through D. Since there are no other optimal
paths through A to a successor of A, A can be marked dead or
redundant, and B is marked to have a single optimal parent of D.
If D were visited first, D would be marked redundant, and only the
path through A would be maintained.

The order in which parents are removed will influence the effec-
tiveness of this approach. In each particular search problem there is
an ordering which will effectively mark all redundant paths, but this
ordering may not be known a priori. This can result in the removal
of locally redundant paths, but prevent more global structures from
being removed. Alternate ordering schemes we tried either shifted
the problem elsewhere in the state space or had too much overhead
to be effective.

In the right portion of Figure 7 we show an example of redundant
cell removal from a real map. The light nodes are those which have
been expanded and are still candidates for exploration. The darker

C S

C

C S

C

Figure 6: Removing dead cells.

336

B D

A

S

B D

A

Figure 7: Detecting redundant cells.

nodes have been marked redundant. As can be seen, there are sev-
eral different paths leading to the areas being explored. Some of
these could be eliminated if a more global perspective was known.
Ideally, there would be one long path leading to each area being ex-
plored, instead of multiple long paths, each of which must be traced
in each iteration of the algorithm.

The effectiveness of dead cell and redundant cell pruning will
depend on the problem being solved. But, we observe that if nodes
can be marked dead and/or redundant at the same rate they are ex-
plored, then the g-cost learning approach will be linear in the num-
ber of states explored. In particular, for the main example used
here (Figure 2), the path down the main diagonal can be marked re-
dundant as soon as the neighbor cells have been explored. In each
iteration the nodes from the two iterations previous will be marked
as redundant. Thus, the cost of exploring this problem and finding
an optimal solution is linear in the size of the map. The elimination
of dead and redundant cells is the key idea that speeds the learning
of the RIBS algorithm we present in the next section.

6. RIBS
We introduce a new real-time search algorithm, Real-time

Iterative-deepening Best-first Search (RIBS), which learns costs-so-
far (g-costs) as described in the previous section. At a conceptual
level the algorithm may be viewed as an ant-style variant of IDA*
that has been adapted to: (a) expand successors in a best-first or-
der, and (b) use the environment as a memory. Like IDA*, RIBS
iteratively searches through the state space expanding all nodes of
a given f -cost before returning to the start state and beginning a
new iteration with next possible f -cost. It is guaranteed to be both
optimal and complete. We describe the algorithm and evaluate it
empirically on two disparate problem domains with respect to both
lower-bounds on learning and performance.

6.1 Pseudo-code
Pseudo-code for RIBS is given in Figure 8. We use a dot nota-

tion to represent data that is stored in a state. For example, sn.g
is the g-cost of state sn. The top-level function is the main driver,
executing the agent’s steps in the environment, one at a time, until
the goal is reached. The agent starts by progressively exploring the
states in the vicinity of the start state that are within a given cost
threshold flimit, initially set to the h-cost of the start state. The
agent must physically visit each of the states because of the ant-
like paradigm of RIBS, backtracking its steps as necessary. When
the agent returns to the start state and finds all successors explored
(snext = null), then the threshold flimit is increased to the lowest
f -value of seen but non-expanded states in the iteration just finish-
ing (fnextlimit), and the next iteration then begins. This is done
until the goal is reached.

The control strategy for choosing the neighboring state to move
to is implemented in the next-state function. It selects the neighbor
of the current state sc to which the agent should move next. Of the
neighbors yet to be visited on the current iteration, the one with the
lowest f -cost is chosen with tie-breaking on higher g-costs. Also,

RIBS(sstart, sgoal)
1 fnextlimit ← ∞
2 flimit ← h(sstart)
3 sc ← sstart

4 initialize(sc, null, 0, flimit)
5 while (sc �= sg) do
6 snext ← next-state(sc, flimit)
7 if (snext = null)
8 flimit ← fnextlimit

9 fnextlimit ← ∞
10 else
11 sc ← snext

12 end if
13 end while

next-state(sc, flimit)
1 for each successor sn of sc do
2 g′ ← sn.g + c(sc, sn)
3 if (not initialized(sn))
4 initialize(sn, sc, g′, 0)
5 end if
6 if (sn.f ≤ flimit)

// Check if a shorter path is found to sn through sc?

7 if (g′ < sn.g) or (g′ = sn.g and sn.lim �= flimit)
8 initialize(sn, sc, g′, flimit)
9 add sn to eligible nodes
10 end if
11 else
12 fnextlimit ← min(fnextlimit, sn.f)
13 end if
14 end for
15 if no eligible nodes
16 snext ← sc.parent // backtrack
17 else

// ... move to the most eligible node

18 snext ← best eligible node (min f max g)
19 end if
20 return snext

initialize(s, parent, g, lim)
1 s.parent ← parent
2 s.g ← g
3 s.f ← s.g + h(s)
4 s.lim ← lim

Figure 8: RIBS algorithm.

the g-value of the current state is updated if it can be reached via
a shorter path than previously known from one of the neighbors.
This allows the agent to learn the costs-so-far. If no neighbors are
eligible then the agent returns to the parent node.

RIBS maintains all the properties of IDA*, so with an consis-
tent, admissible heuristic the algorithm will be both optimal and
complete, assuming that all costs are lower bounded by some fixed
ε > 0.

The two enhancements of eliminating dead-end and redundant
states, although an integral part of the algorithm, are not shown
in the pseudo-code as the implementation details are somewhat in-
volved and would unnecessarily deflect from the presentation of the
basic underlying algorithm (we refer the reader back to the discus-
sion in the previous section).

6.2 Domain-Specific Analysis
In here we give a brief analysis of RIBS’s learning complexity

on both exponential and polynomial domains. Let d be the search

337

depth and b the average branching factor.
First, we show a general worst-case bound. Assume that every

node in the state space has a unique f -cost. Then, RIBS will expand
one new node during each iteration, and the total number of nodes
expanded will be 1 + 2 + · · · + N = N(N + 1)/2, or O(N2).
Note that IDA* can blow up a graph exponentially, but RIBS uses
the environment to detect cycles and so has better performance than
IDA* in this regard.

In exponential domains it is usually assumed that the number of
nodes expanded in each iteration is b times larger than the previous
iteration. Under this assumption the cost of iterative deepening is
dominated by the last iteration and the total cost is O(bd). Assume
that all nodes in the last iteration must be expanded. Then, if dead
and redundant cell pruning can reduce the size of the previous iter-
ations, it will not asymptotically improve performance. Thus RIBS
best-case and average-case performance will be the same – O(bd)
nodes expanded and O(bd) distance travelled.

A polynomial domain is one where the number of nodes ex-
panded in an iteration to depth d grows as dk where k is a constant.
Consider first an average-case analysis. Let the cost of an iteration
to depth d be dk. Then, the total number of nodes expanded over
multiple iterations will be: 1k + 2k + 3k + · · · + dk =

Pd
i=0 ik.

The result is that the cost of iterations in an iterative deepening al-
gorithm is in general not necessarily amortized by the cost of the
last iteration. Instead, the degree of the polynomial is increased by
one, for total work O(dk+1). So, for a grid-based map where the
map size grows as d2 (where d is the dimension of one side of the
map), in general d3 work might be required to find an optimal so-
lution with an iterative deepening approach, which is N1.5, where
N is the total number of states in the state space.

In the best case, RIBS will be able to reduce this to O(N). This
occurs when the dead and redundant cell pruning techniques are
able to prune nodes at the same rate at which they are being ex-
plored, as will be the case in Figure 2. These techniques are the
key to the asymptotic reduction of RIBS over previous techniques.

7. EMPIRICAL EVALUATION
In this section we evaluate algorithms on two domains, grid-

based pathfinding and the sliding-tile puzzle. Experimental evi-
dence supports our work measure as a good predictor for problem
difficulty. We then look at how larger lookahead can reduce the
learning required, and measure how these algorithms scale.

7.1 Scaling Experiments on Grids
We begin with experiments on grids. On the grid maps cardi-

nal moves have cost 1.0, while diagonal moves have cost 1.5. We
use the octile heuristic as the default heuristic, which is a perfect
heuristic for 8-connected grids on an empty map without obstacles.

Our first experiment is a scaling experiment, performed on a
class of maps like that shown in Figure 2. The start and goal are
marked as S and G. This map is 9×9, but we will experiment with
the same map from size 5 × 5 to 1000 × 1000.

Before discussing and presenting results, consider the problem
facing a heuristic-learning agent. The heuristic will lead an agent
towards state A, which then must learn enough to fill the local area
with higher heuristic values before the goal can be found. This type
of problem is typical in grid-based maps, but as far as we are aware,
scaling experiments have not been previously performed.

It is difficult to quickly analyze the learning required for this
problem, so we turn to our learning metric which is demonstrated
in Figure 3. Assuming that the diameter of the map is d, the initial
heuristic of the start state will be 1.5(d − 1), but should actually
be 2(d − 1). Thus, the error (d/2) is proportional to the size of

LSSLRTA*(10)

LRTA*

LSSLRTA*(100)

N
od

es
 E

xp
an

de
d

109

0

3

6

9

12

15

18

States in Map 105

0 2 4 6 8 10

Figure 9: Nodes expanded by learning algorithms when explor-
ing to convergence.

the map, and the total heuristic error will be O(d3) (O(d) error on
each of d2 cells). If there are N = d2 states in the map, then the
error, and hence the learning required will be O(N1.5). As long as
diagonal edges have constant cost less than 2, the learning required
will always grow in this manner.

We used our learning measure to predict the amount of learning
required for each problem. As our metric predicts, the amount of
learning grows as N1.5. On a 500× 500 map, 4.15× 107 learning
is predicted. This works out to be an average update of 166.9 for
every state which requires learning. If the map width and height
are doubled, the number of states for which learning is required
increases by a factor of 4. So, the total learning per state should
increase by a factor of 2. On the 1000 × 1000 maps an update of
333.5 per state is predicted, which fits this analysis.

Next, we run several learning algorithms on this problem. We
compare LRTA* with lookahead of radius 1 with Koenig’s LSS-
LRTA* [15] with a lookahead of both 10 and 100 nodes. LSS-
LRTA* uses a k-node A*-shaped lookahead and updates the heuris-
tic values of nodes within the lookahead based on unexpanded
nodes on the border of the lookahead. LSS-LRTA*(1) is equivalent
to LRTA*. We measured the total nodes expanded and touched, the
total distance travelled, and the total learning. Nodes expanded,
touched, and distance travelled all follow a curve that matches
kN1.5 for appropriate constants k. In Figure 9, because of space
limitations, we show only the curves for the number of nodes ex-
panded to convergence. The x-axis shows the number of states in
the map (×105) and the y-axis the total number of nodes expanded
(×109). LSS-LRTA* with larger lookahead converges faster than
LRTA*, but expand more nodes per step, so for LSS-LRTA*(10)
the total work (nodes expanded) is larger than LRTA*. Accord-
ing to our learning metric, LRTA* learns about 88% more than
the minimum required, and LSS-LRTA* with lookahead of 10 or
100 learned 93% more than the minimum required. The algorithms
learn more than required because they fill up the heuristic depres-
sion from the inside instead of learning from the optimal path on
the outside.

As RIBS only requires a single trial to converge, we plot the first-
trial performance for both RIBS with lookahead 1 and LSS-LRTA*
with lookahead 100 in Figure 10. We plot performance on a log-
log plot so the algorithms performance can be more clearly mea-
sured. As expected, on small problems LSS-LRTA* is able to use
its lookahead to quickly find a solution to the problem on the first
trial, while RIBS with lookahead one slowly explores. But, once
the map size approaches 2000 nodes (a 45×45 local minima) RIBS
begins to outperform LSS-LRTA*, even on the first trial. On a
map with 1 million states, RIBS expands 7.9 million nodes to LSS-
LRTA*’s 177 million. The nodes expanded by RIBS is growing
at approximately 8N , while the growth of the LSS-LRTA* curve

338

LSSLRTA*(100)

RIBS
N

od
es

 E
xp

an
de

d
(F

ir
st

 T
ri

al
)

102

104

106

108

States in Map

101 102 103 104 105 106

Figure 10: RIBS versus LSS-LRTA* first-trial performance.
4.0 4.5 5.0 4.5

5.0

3.5

3.0 G

G

3.01.5

S

.5

Figure 11: Corridor where heuristic underestimates actual
cost.

correlates to 0.09 ∗ x1.55 with a correlation coefficient of 0.999.
Note that without redundant cell pruning RIBS exhibits the same
asymptotic growth as the learning algorithms.

This result is clearly the best-case possible. We provide a worst-
case example in Figure 11, which is a maze-like corridor with in-
accurate heuristic values that will cause RIBS to perform multiple
iterations before converging. If the length of the corridor is d, RIBS
expands O(d2) nodes before converging. In this case, LRTA* will
find the optimal path in d steps on each trial, but it will take exactly
d trials and d2 steps to converge.

In practice, any real-world problem may have a mix of problems
that look like both Figure 2 and Figure 11. The exact mix will
likely determine the performance of each algorithm type. Ideally,
both of these approaches could be combined in a way that plays to
the strengths of each approach, but this is a matter of future work.

7.2 Experiments on Game Maps
Given these results, we then perform experiments on maps from

the game Baldur’s Gate. We experiment on 75 maps, each of which
is scaled to 512×512 in size. On each map we have 1280 problems,
evenly distributed in length between 0 and 512. Over all problems
the average learning per problem required is 278, 644, and the av-
erage state needs to have its heuristic increased by 15.8. On the
hardest problems of length 508-512, the average minimum heuris-
tic update is 54.1. We scaled the maps to size 1024 × 1024 and
the learning per state on longs paths increased to 107.45. Thus, the
learning required on these maps seems to be growing as N1.5 as
the maps scale.

On these problems we measured the number of trials, the dis-
tance travelled (both on the first trial and to convergence), the total
nodes expanded (first trial and to convergence), as well as the ra-
tio of the learning performed to the minimum learning required,
according to our metric. Each data point is an average over all
problems (75 × 1280).

We compare LRTA*, LSS-LRTA* (labelled LL) and RIBS in
Table 1, noting the following trends. While we have shown that
greater lookahead may not asymptotically reduce the amount of
learning required, it does have the effect of reducing the actual
learning performed in the problem. LRTA*, for instance, performs
3.37 times the minimum learning required, while LSS-LRTA*(100)
only performs 2.21 times the minimum learning. Both algorithms

Table 1: Comparison over all maps and problems.
Algorithm

LRTA* LL(10) LL(100) RIBS

Avg. Trials 2,707 650 109 1
Trial 1 Dist 44,627 10,288 1,680 210,377

Total Dist 1.56×106 360,581 55,548 210,377
Trial 1 Nodes 40,488 114,853 35,572 169,690

Total Nodes 1.3×106 2.43×106 598,716 169,690
Learn Ratio 3.36 2.80 2.21 -

Table 2: Comparison over longest problems.
Algorithm

Size Measure LSS-LRTA(100) RIBS

5122 Trial 1 Dist 8,326 1.00×106

10242 Trial 1 Dist 62,524 [7.5×] 6.74×106 [6.7×]
5122 Trial 1 Nodes 192,216 811,001
10242 Trial 1 Nodes 1.58×106 [8.2×] 5.46×106 [6.7×]

are learning in areas of the map that may not be strictly required, but
LSS-LRTA* with larger lookahead does a better job of limited the
learning in these cases. RIBS has a higher first-trial cost than the
other algorithms, but has far better convergence costs, expanding an
order of magnitude fewer nodes than LRTA* and LSS-LRTA*(10).
RIBS expands only 3.5 times fewer nodes as LSS-LRTA*(100), but
this is still a strong result, especially considering that RIBS has a
lookahead of only 1.

To gain some insights into how the algorithms behave as the
problem difficulty grows, we focus on the longest problems (length
508 − 512) as the maps grow in size. In Table 2 we show for
those problems the distance travelled and nodes expanded on the
first trial averaged over all maps as they are scaled up from size
512 × 512 to 1024 × 1024. We show the growth of each metric
next to the figures. Based on this limited data it is difficult to draw
strong conclusions, but the results suggest that the cost of learning
required by LSS-LRTA* is growing faster than cost of searching by
RIBS. The work required by RIBS, however, is no longer growing
linearly, suggesting that there are portions of the map where RIBS
has increased the asymptotic cost.

7.3 Experiments on Sliding-Tile Puzzle
In addition to experimenting on a polynomial domain, we also

look at an exponential domain, the sliding-tile puzzle. In the
sliding-tile puzzle, the cost of iterative deepening is amortized by
the cost of the last iteration, so RIBS is expected to perform well
in this domain. We tested the same algorithms as before on a set of
500 problems generated by taking a random walk length 100 from
the goal state. According to our metric, the average learning re-
quired per problem is 154,953. The average learning per state is
2.44. Looking at a histogram for each problem, more than 66% of
the states that require learning in each problem only require an up-
date of 2 from the initial heuristic. Thus, in this domain the learning
task does not grow as quickly as in pathfinding.

We collected the same kind of average statistics for the 500
sliding-tile puzzle problems as for the game maps. The results of
our experiments are shown in Table 3. On the first trial, the learning
algorithms have much better performance, traveling only a small
fraction of the distance that a RIBS agent does. But, these algo-
rithms take hundreds or thousands of trials to converge. Only LSS-
LRTA* with a lookahead of 100 travels a comparable distances to
RIBS when converging, but expands over 40 times the number of
nodes that RIBS does in the process. Additionally, the learning al-

339

Table 3: Comparison over 500 sliding-tile puzzle problems.
Algorithm

LRTA* LL(10) LL(100) RIBS

Avg. Trials 6417 2840 455 1
Trial 1 Dist 945 389 130 76,147

Total Dist 3.50×107 3.82×106 111,151 76,147
Trial 1 Nodes 945 2,928 3,436 76,151

Total Nodes 3.50×107 2.97×107 3.23×106 76,151
Learn Ratio 244.6 97.9 8.8 -

gorithms are much less efficient with their learning in this domain.
LRTA* learns 250 times as much as is required for convergence,
while LSS-LRTA* learns 8.8 times the minimum required.

8. CONCLUSIONS AND FUTURE WORK
This paper advances the state-of-art in real-time agent-centered

heuristic search in several ways. We propose a new learning met-
ric which measures the minimum learning required to converge to
an optimal solution for a given problem. Based on this, we show
that learning algorithms like LRTA* cannot asymptotically reduce
the amount of learning required by increasing their lookahead, al-
though they can reduce the amount of learning they perform above
and beyond the minimum required. We show that common prob-
lems in grid-based maps require learning that grows as O(N1.5) in
the number of states in the map. We introduce a new algorithm,
RIBS, which can solve a class of these problems in O(N) steps,
and show that it outperforms the convergence cost of existing al-
gorithms by several orders of magnitude. As far as we are aware,
this is the first work which properly studies the properties of these
algorithms as map sizes scale.

The work here suggests many new avenues of research. RIBS
here is presented with only a lookahead of distance 1. The best
way to scale RIBS to use a larger lookahead is an open question.
Additionally, RIBS has poor first-trial performance on many ‘easy’
problems, because it always finds the optimal solution in the first
trial. We are interested in studying the many possible extensions to
RIBS to improve first-trial performance, including weighted-RIBS
and interleaving the RIBS and LRTA*-style algorithms. Finally,
our learning metric should be extended to a larger class of prob-
lems and adapted to predict first-trial performance in addition to
convergence.

In summary, this work provides new analysis and algorithms that
push forward the state-of-art in real-time heuristic search.

9. REFERENCES
[1] R. Bellman. Dynamic Programming. Princeton University Press,

1957.

[2] Y. Björnsson, V. Bulitko, and N. Sturtevant. TBA*: Time-bounded
A*. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), Pasadena, California, 2009. AAAI Press.

[3] V. Bulitko. Learning for adaptive real-time search. Technical Report
http: // arxiv. org / abs / cs.AI / 0407016, Computer Science Research
Repository (CoRR), 2004.

[4] V. Bulitko and G. Lee. Learning in real time search: A unifying
framework. Journal of Artificial Intelligence Research (JAIR),
25:119–157, 2006.

[5] D. Furcy and S. Koenig. Speeding up the convergence of real-time
search. In Proceedings of the National Conference on Artificial
Intelligence, pages 891–897, 2000.

[6] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[7] C. Hernández and P. Meseguer. LRTA*(k). In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),

pages 1238–1243, Edinburgh, UK, 2005.

[8] T. Ishida. Moving target search with intelligence. In Proceedings of
the National Conference on Artificial Intelligence, pages 525–532,
1992.

[9] T. Ishida and R. Korf. Moving target search. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages
204–210, 1991.

[10] S. Koenig. The complexity of real-time search. Technical Report
CMU–CS–92–145, School of Computer Science, Carnegie Mellon
University, Pittsburgh, 1992.

[11] S. Koenig. Agent-centered search. Artificial Intelligence Magazine,
22(4):109–132, 2001.

[12] S. Koenig. A comparison of fast search methods for real-time
situated agents. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume
2, pages 864 – 871, 2004.

[13] S. Koenig and M. Likhachev. Real-time adaptive A*. In Proceedings
of the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 281–288, 2006.

[14] S. Koenig and R. G. Simmons. Complexity analysis of real-time
reinforcement learning. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 99–105, 1993.

[15] S. Koenig and X. Sun. Comparing real-time and incremental
heuristic search for real-time situated agents. Autonomous Agents
and Multi-Agent Systems, 18(3):313–341, 2009.

[16] R. Korf. Depth-first iterative deepening: An optimal admissible tree
search. Artificial Intelligence, 27(3):97–109, 1985.

[17] R. Korf. Real-time heuristic search. Artificial Intelligence,
42(2-3):189–211, 1990.

[18] G. Lee, V. Bulitko, and I. Nikolaidis. nLRTS: Improving distance
vector routing in sensor networks. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), Workshop on Learning
For Search, pages 101–107, Boston, Massachusetts, 2006.

[19] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun.
Anytime dynamic A*: An anytime, replanning algorithm. In
Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), 2005.

[20] M. Mizusawa and M. Kurihara. Hardness measures for gridworld
benchmarks and performance analysis of real-time heuristic search
algorithms. Journal of Heuristics, 2008.

[21] D. C. Rayner, K. Davison, V. Bulitko, K. Anderson, and J. Lu.
Real-time heuristic search with a priority queue. In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI),
pages 2372–2377, Hyderabad, 2007.

[22] S. Russell and E. Wefald. Do the right thing: Studies in limited
rationality. MIT Press, 1991.

[23] A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot ants and
elephants. In AAMAS ’09: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems, pages
81–88, Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems.

[24] M. Shimbo and T. Ishida. Controlling the learning process of
real-time heuristic search. Artificial Intelligence, 146(1):1–41, 2003.

[25] L.-Y. Shue, S.-T. Li, and R. Zamani. An intelligent heuristic
algorithm for project scheduling problems. In Proceedings of the
Thirty Second Annual Meeting of the Decision Sciences Institute, San
Francisco, 2001.

[26] L.-Y. Shue and R. Zamani. An admissible heuristic search algorithm.
In Proceedings of the 7th International Symposium on Methodologies
for Intelligent Systems, volume 689 of LNAI, pages 69–75. Springer
Verlag, 1993.

[27] A. Stenz. The focussed D* algorithm for real-time replanning. In
Proceedings of the International Conference on Artificial
Intelligence, pages 1652–1659, 1995.

[28] Ubisoft Montreal. Far Cry 2, 2008.

340

